Title: | Nitrogen Use Efficiency Toolkit on Numerics |
---|---|
Description: | Comprehensive R package designed to facilitate the calculation of Nitrogen Use Efficiency (NUE) indicators using experimentally derived data. The package incorporates 23 parameters categorized into six fertilizer-based, four plant-based, three soil-based, three isotope-based, two ecology-based, and four system-based indicators, providing a versatile platform for NUE assessment. As of the current version, 'NUETON' serves as a starting point for users to compute NUE indicators from their experimental data. Future updates are planned to enhance the package's capabilities, including robust data visualization tools and error margin consideration in calculations. Additionally, statistical methods will be integrated to ensure the accuracy and reliability of the calculated indicators. All formulae used in 'NUETON' are thoroughly referenced within the source code, and the package is released as open source software. Users are encouraged to provide feedback and contribute to the improvement of this package. It is important to note that the current version of 'NUETON' is not intended for rigorous research purposes, and users are responsible for validating their results. The package developers do not assume liability for any inaccuracies in calculations. This package includes content from Congreves KA, Otchere O, Ferland D, Farzadfar S, Williams S and Arcand MM (2021) 'Nitrogen Use Efficiency Definitions of Today and Tomorrow.' Front. Plant Sci. 12:637108. <doi:10.3389/fpls.2021.637108>. The article is available under the Creative Commons Attribution License (CC BY) C. 2021 Congreves, Otchere, Ferland, Farzadfar, Williams and Arcand. |
Authors: | Shubham Love [aut, cre] |
Maintainer: | Shubham Love <[email protected]> |
License: | GPL-3 |
Version: | 0.1.0 |
Built: | 2025-02-14 03:24:30 UTC |
Source: | https://github.com/cran/NUETON |
The contribution of fertilizer N towards yield, compared to a non-fertilized control Calculate AE using the formula: AE = (YieldF-Yield0)/FertN
AE(YieldF = NULL, Yield0 = NULL, FertN = NULL, PE = NULL, RE = NULL)
AE(YieldF = NULL, Yield0 = NULL, FertN = NULL, PE = NULL, RE = NULL)
YieldF |
A numeric vector for yield in fertilized Conditions. |
Yield0 |
A numeric vector of non-fertilized control yield values. |
FertN |
The value of inorganic N contained in any form of N input (from synthetic or organic sources) |
PE |
Physiological Efficiency numeric value |
RE |
Recovery Efficiency numeric value |
The calculated AE value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Dobermann, A. (2007). “Nutrient use efficiency–measurement and management,” in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.
YieldF <- c(2.92, 3.78, 4.68, 4.21) Yield0 <- c(1.98, 2.66, 4.26, 3.78) FertN <- 15 AE(YieldF, Yield0, FertN) PE<-10 RE<-5 AE(PE=PE, RE=RE)
YieldF <- c(2.92, 3.78, 4.68, 4.21) Yield0 <- c(1.98, 2.66, 4.26, 3.78) FertN <- 15 AE(YieldF, Yield0, FertN) PE<-10 RE<-5 AE(PE=PE, RE=RE)
The product of N productivity and the mean residency time (MRT) of plant N. Calculate NUEecology using the formula: ecoNUE = NP * MRT
ecoNUE(NP, MRT)
ecoNUE(NP, MRT)
NP |
Nitrogen Productivity Value |
MRT |
Mean Residency Time value |
The calculated ecoNUE value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Lambers, H., and Oliveira, R. S. (eds). (2019). “Mineral Nutrition,” in Plant Physiological Ecology. Cham: Springer International Publishing, 301–384. doi: 10.1007/978-3-030-29639-1_9
NP <- 33.63571 MRT <- 1.009715 ecoNUE(NP, MRT)
NP <- 33.63571 MRT <- 1.009715 ecoNUE(NP, MRT)
The fraction of plant tissue N that is contained in the yield component. Calculate IE using the formula: IE = YieldNF / PlantNf
IE(YieldNF, PlantNf)
IE(YieldNF, PlantNf)
YieldNF |
A numeric vector for yield N in fertilized Conditions. |
PlantNf |
A numeric vector of non-fertilized control yield values. |
The calculated IE value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Dobermann, A. (2007). “Nutrient use efficiency–measurement and management,” in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.
YieldNF <- c(2.92, 3.78, 4.68, 4.21) PlantNf <- c(2.89, 3.66, 4.73, 4.16) IE(YieldNF, PlantNf)
YieldNF <- c(2.92, 3.78, 4.68, 4.21) PlantNf <- c(2.89, 3.66, 4.73, 4.16) IE(YieldNF, PlantNf)
The difference between fertilizer N applied and the N removed as yield; commonly called N surplus.
Calculate NBI using the formula: NBI = YieldN-FertN
NBI(YieldN, FertN)
NBI(YieldN, FertN)
YieldN |
A numeric vector of the N removed as yield values. |
FertN |
A numeric value for fertilizer N input. |
The calculated NBI value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: IPNI (2014). Nutrient Performance Indicators: The Importance of Farm Scale Assessments, Linked to Soil Fertility, Productivity, Environmental Impact and the Adoption of Grower Best Management Practices. Available online at: http://anz.ipni.net/ipniweb/region/anz.nsf/0/9312A2172A0B917CCA257E8E007219B4/$FILE/IssueReviewPerfInd081114.pdf
YieldN <- c(5.4, 6.3, 4.8, 7.2) FertN <- 1.5 NBI(YieldN, FertN)
YieldN <- c(5.4, 6.3, 4.8, 7.2) FertN <- 1.5 NBI(YieldN, FertN)
The percentage of plant or soil N that is derived from the fertilizer. Calculate NdfF using the formula: NdfF = Plant15N/Fert15N
NdfF(Plant15N, Fert15N)
NdfF(Plant15N, Fert15N)
Plant15N |
A vector of 15N atom percent excess in plant or soil values. |
Fert15N |
15N atom percent excess of fertilizer N. |
The calculated NdfF value expressed as a percentage.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: IAEA (1983). Guide on the Use of Nitrogen-15 and Radioisotopes in Studies of Plant Nutrition: Calculations and Interpretation of Data. Vienna: IAEA.
Plant15N <- c(2.92, 3.78, 4.68, 4.21) Fert15N <- 15 NdfF(Plant15N, Fert15N)
Plant15N <- c(2.92, 3.78, 4.68, 4.21) Fert15N <- 15 NdfF(Plant15N, Fert15N)
The percent of plant tissue N that is contained in the yield component. Calculate NHI using the formula: NHI = YieldF / PlantNf
NHI(YieldF, PlantNf)
NHI(YieldF, PlantNf)
YieldF |
A numeric vector of final yield values. |
PlantNf |
A numeric value for plant tissue N. |
The calculated NHI value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Moll, R. H., Kamprath, E. J., and Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 74, 562–564. doi: 10.2134/agronj1982.00021962007400030 037x
YieldF<- c(2.89, 3.66, 4.73, 4.16) PlantNf <- c(2.92, 3.78, 4.68, 4.21) NHI(YieldF, PlantNf)
YieldF<- c(2.89, 3.66, 4.73, 4.16) PlantNf <- c(2.92, 3.78, 4.68, 4.21) NHI(YieldF, PlantNf)
The ratio of the relative growth rate to the concentration of N in plant tissues. Calculate Nitrogen Productivity using the formula: NP = GR/PlantN
NP(GR, PlantN)
NP(GR, PlantN)
GR |
Plant relative growth rate value |
PlantN |
A numeric vector of values for plant N concentration. |
The calculated NP value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Berendse, F., and Aerts, R. (1987). Nitrogen-use-efficiency: a biologically meaningful definition? Funct. Ecol. 1, 293–296.
GR <- 15 PlantN <- c(12.1, 8.99, 12.89, 13.11) NP(GR, PlantN)
GR <- 15 PlantN <- c(12.1, 8.99, 12.89, 13.11) NP(GR, PlantN)
The percentage of fertilizer N that is taken up by the plant, accounting for background soil N levels; also sometimes referred to as apparent recovery. Calculate NRE using the formula: NRE = ((PlantNf - PlantN0) / FertN) * 100
NRE(PlantNf, PlantN0, FertN)
NRE(PlantNf, PlantN0, FertN)
PlantNf |
A numeric vector of values for plant N at the end of the experiment. |
PlantN0 |
A numeric vector of values for plant N at the beginning of the experiment. |
FertN |
A numeric value for fertilizer N input. |
The calculated NRE value as a percentage.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Dobermann, A. (2007). “Nutrient use efficiency–measurement and management,” in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.
PlantNf <- c(2.92, 3.78, 4.68, 4.21) PlantN0 <- c(1.22, 2.66, 3.99, 2.58) FertN <- 15 NRE(PlantNf, PlantN0, FertN)
PlantNf <- c(2.92, 3.78, 4.68, 4.21) PlantN0 <- c(1.22, 2.66, 3.99, 2.58) FertN <- 15 NRE(PlantNf, PlantN0, FertN)
The percent recovery, or utilization, of fertilizer-N in plant and/or soil components Calculate NRE15 using the formula: NRE15 = (TNdfF in Plant or Soil / FertN) * 100
NRE15(TNdfF, FertN)
NRE15(TNdfF, FertN)
TNdfF |
Total N derived from Fertilizer in plant or soil value. |
FertN |
A numeric value for fertilizer N input. |
The calculated NRE15 value as a percentage.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: IAEA (1983). Guide on the Use of Nitrogen-15 and Radioisotopes in Studies of Plant Nutrition: Calculations and Interpretation of Data. Vienna: IAEA.
TNdfF <- 3.058888 FertN <- 15 NRE15(TNdfF, FertN)
TNdfF <- 3.058888 FertN <- 15 NRE15(TNdfF, FertN)
The fraction of N inputs that are removed from the system (either as yield or N losses) Calculate NUEbalance using the formula: NUEbal = No/Ni
NUEbal(No, Ni)
NUEbal(No, Ni)
No |
Sum total of N outputs (enter each value individually) |
Ni |
Sum total of N inputs (enter each value individually) |
The calculated NUEbalance value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Martinez-Feria, R. A., Castellano, M. J., Dietzel, R. N., Helmers, M. J., Liebman, M., Huber, I., et al. (2018). Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 256, 131– 143. doi: 10.1016/j.agee.2018.01.002
No <- c(2.89, 3.66, 4.73, 4.16) Ni <- c(2.92, 3.78, 4.68, 4.21) NUEbal(No, Ni)
No <- c(2.89, 3.66, 4.73, 4.16) Ni <- c(2.92, 3.78, 4.68, 4.21) NUEbal(No, Ni)
The fraction of fertilizer N that is utilized and allocated to yield N. Calculate NUEcrop using the formula: NUEcrop = YieldN/FertN
NUEcrop(YieldN, FertN)
NUEcrop(YieldN, FertN)
YieldN |
A numeric vector of the N removed as yield values. |
FertN |
A numeric value for fertilizer N input. |
The calculated NUEcrop value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Martinez-Feria, R. A., Castellano, M. J., Dietzel, R. N., Helmers, M. J., Liebman, M., Huber, I., et al. (2018). Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 256, 131– 143. doi: 10.1016/j.agee.2018.01.002
YieldN <- c(2.88, 4.54, 3.62, 4.21) FertN <- 15 NUEcrop(YieldN, FertN)
YieldN <- c(2.88, 4.54, 3.62, 4.21) FertN <- 15 NUEcrop(YieldN, FertN)
The N balance of the entire food chain system, in terms of N consumed as protein relative to N inputs. Calculate NUEFC using the formula: NUEFC = Ncon / Ni
NUEFC(Ncon, Ni)
NUEFC(Ncon, Ni)
Ncon |
The value of N available for consumption |
Ni |
Sum total of new N input |
The calculated NUEFC value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639. doi: 10.1038/ngeo325
Ncon <- 15.574 Ni <- c(2.92, 3.78, 4.68, 4.21) NUEFC(Ncon, Ni)
Ncon <- 15.574 Ni <- c(2.92, 3.78, 4.68, 4.21) NUEFC(Ncon, Ni)
The biomass production per unit of available N. Calculate NUEsoil using the formula: NUEsoil = PlantBM / (FertN + SoilN)
NUEsoil(PlantBM, SoilN, FertN)
NUEsoil(PlantBM, SoilN, FertN)
PlantBM |
A numeric vector of values for plant biomass. |
SoilN |
A numeric value for soil N content. |
FertN |
A numeric value for fertilizer N input. |
The calculated NUEsoil value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Moll, R. H., Kamprath, E. J., and Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 74, 562–564. doi: 10.2134/agronj1982.00021962007400030 037x
PlantBM <- c(12.1, 8.99, 12.89, 13.11) SoilN <- 20 FertN <- 15 NUEsoil(PlantBM, SoilN, FertN)
PlantBM <- c(12.1, 8.99, 12.89, 13.11) SoilN <- 20 FertN <- 15 NUEsoil(PlantBM, SoilN, FertN)
The contribution of N supplied from the soil that is allocated to the yield N; also often referred to as simply NUE. Calculate NUEyield using the formula: NUEyield = NUpE * NUtE
NUEyield(NUpE, NUtE)
NUEyield(NUpE, NUtE)
NUpE |
N Uptake Efficiency |
NUtE |
N Utilization Efficiency |
The calculated NUEyield value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Novoa, R., and Loomis, R. S. (1981). Nitrogen and plant production. Plant Soil 58, 177–204. doi: 10.1007/BF02180053
NUpE <- 33.63571 NUtE <- 1.009715 NUEyield(NUpE, NUtE)
NUpE <- 33.63571 NUtE <- 1.009715 NUEyield(NUpE, NUtE)
The percentage of available soil N that is utilized by the plant; also conceptualized as apparent recovery efficiency of the N supply. Calculate NUpE using the formula: NUpE = (PlantN / (FertN + SoilN)) * 100
NUpE(PlantN, SoilN, FertN)
NUpE(PlantN, SoilN, FertN)
PlantN |
A numeric vector of values for plant N content. |
SoilN |
A numeric value for soil N content. |
FertN |
A numeric value for fertilizer N input. |
The calculated NUpE value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Moll, R. H., Kamprath, E. J., and Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 74, 562–564. doi: 10.2134/agronj1982.00021962007400030 037x
PlantN <- c(12.1, 8.99, 12.89, 13.11) SoilN <- 20 FertN <- 15 NUpE(PlantN, SoilN, FertN)
PlantN <- c(12.1, 8.99, 12.89, 13.11) SoilN <- 20 FertN <- 15 NUpE(PlantN, SoilN, FertN)
The contribution of fertilizer N from the plant tissues towards the yield component. Similar to PE, but does not account for background N. Calculate NUtE using the formula: NUtE = Yield / PlantN
NUtE(Yield, PlantN)
NUtE(Yield, PlantN)
Yield |
A numeric vector of yield values. |
PlantN |
A numeric value for plant tissue N. |
The calculated NUtE value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Moll, R. H., Kamprath, E. J., and Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 74, 562–564. doi: 10.2134/agronj1982.00021962007400030 037x
Yield <- c(2.92, 3.78, 4.68, 4.21) PlantN <- c(2.89, 3.66, 4.73, 4.16) NUtE(Yield, PlantN)
Yield <- c(2.92, 3.78, 4.68, 4.21) PlantN <- c(2.89, 3.66, 4.73, 4.16) NUtE(Yield, PlantN)
The contribution of fertilizer N from the plant tissues towards the yield component. Calculate PE using the formula: PE = (YieldF-Yield0)/(PlantNf-PlantN0)
PE(YieldF, Yield0, PlantNf, PlantN0)
PE(YieldF, Yield0, PlantNf, PlantN0)
YieldF |
A numeric vector of final yield values. |
Yield0 |
A numeric vector of non-fertilized control yield values. |
PlantNf |
A numeric vector of values for plant N at the end of the experiment. |
PlantN0 |
A numeric vector of values for plant N at the beginning of the experiment. |
The calculated PE value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Dobermann, A. (2007). “Nutrient use efficiency–measurement and management,” in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.
YieldF <- c(2.92, 3.78, 4.68, 4.21) Yield0 <- c(1.98, 2.66, 4.26, 3.78) PlantNf <- c(2.89, 3.66, 4.73, 4.16) PlantN0 <- c(1.22, 2.66, 3.99, 2.58) PE(YieldF, Yield0, PlantNf, PlantN0)
YieldF <- c(2.92, 3.78, 4.68, 4.21) Yield0 <- c(1.98, 2.66, 4.26, 3.78) PlantNf <- c(2.89, 3.66, 4.73, 4.16) PlantN0 <- c(1.22, 2.66, 3.99, 2.58) PE(YieldF, Yield0, PlantNf, PlantN0)
The expression of yield per unit of fertilizer N applied.
Calculate PFP using the formula: PFP = YieldF / FertN
PFP(YieldF, FertN)
PFP(YieldF, FertN)
YieldF |
A numeric vector of final yield values. |
FertN |
A numeric value for fertilizer N input. |
The calculated PFP value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Dobermann, A. (2007). “Nutrient use efficiency–measurement and management,” in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.
YieldF <- c(12.09, 11.99, 15.20, 10.33) FertN <- 15 PFP(YieldF, FertN)
YieldF <- c(12.09, 11.99, 15.20, 10.33) FertN <- 15 PFP(YieldF, FertN)
The expression of plant N content per unit of fertilizer N applied Calculate PNB using the formula: PNB = PlantNf/FertN
PNB(PlantNf, FertN)
PNB(PlantNf, FertN)
PlantNf |
Plant N content in fertilized conditons. |
FertN |
A numeric value for fertilizer N input. |
The calculated PNB value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Dobermann, A. (2007). “Nutrient use efficiency–measurement and management,” in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.
PlantNf <- c(2.92, 3.78, 4.68, 4.21) FertN <- 15 PNB(PlantNf, FertN)
PlantNf <- c(2.92, 3.78, 4.68, 4.21) FertN <- 15 PNB(PlantNf, FertN)
The accumulation or reduction of soil N over a set time. Calculate sNBI using the formula: sNBI = Ni - No - delSoilN
sNBI(Ni, No, delSoilN)
sNBI(Ni, No, delSoilN)
Ni |
Sum total of N inputs (enter each value individually) |
No |
Sum total of N outputs (enter each value individually) |
delSoilN |
Change in total soil N value |
The calculated ecoNUE value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Sainju, U. M. (2017). Determination of nitrogen balance in agroecosystems. MethodsX 4, 199–208. doi: 10.1016/j.mex.2017.06.001
Ni <- c(2.92, 3.78, 4.68, 4.21) No <- c(2.89, 3.66, 4.73, 4.16) delSoilN <- 0.085 sNBI(Ni, No, delSoilN)
Ni <- c(2.92, 3.78, 4.68, 4.21) No <- c(2.89, 3.66, 4.73, 4.16) delSoilN <- 0.085 sNBI(Ni, No, delSoilN)
The fraction of system N outputs that are captured as N yield rather than lost to the environment Calculate sNUE using the formula: sNUE = (YieldN / (YieldN + Nloss))
sNUE(YieldN, Nloss)
sNUE(YieldN, Nloss)
YieldN |
Observed crop yield vector that is attributed to the nitrogen inputs in the system |
Nloss |
The value of nitrogen that is lost from the system and not utilized by the crops. |
The calculated sNUE value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: Martinez-Feria, R. A., Castellano, M. J., Dietzel, R. N., Helmers, M. J., Liebman, M., Huber, I., et al. (2018). Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 256, 131– 143. doi: 10.1016/j.agee.2018.01.002
YieldN <- c(5.4, 6.3, 4.8, 7.2) Nloss <- 3.574 sNUE(YieldN, Nloss)
YieldN <- c(5.4, 6.3, 4.8, 7.2) Nloss <- 3.574 sNUE(YieldN, Nloss)
The total quantity of plant or soil N that is derived from fertilizer Calculate TNdfF using the formula: TNdfF = (NdfF/100) * Plant N or Soil N
TNdfF(NdfF, PlantN = NULL, SoilN = NULL)
TNdfF(NdfF, PlantN = NULL, SoilN = NULL)
NdfF |
N derived from Fertilizer expressed as a percentage. |
PlantN |
A numeric vector of values for plant N content. |
SoilN |
A numeric value for soil N content. |
The calculated TNdfF value.
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
Secondary: IAEA (1983). Guide on the Use of Nitrogen-15 and Radioisotopes in Studies of Plant Nutrition: Calculations and Interpretation of Data. Vienna: IAEA.
NdfF <- 25.98333 SoilN <- 20 PlantN <- c(12.1, 8.99, 12.89, 13.11) TNdfF(NdfF, PlantN) TNdfF(NdfF, SoilN)
NdfF <- 25.98333 SoilN <- 20 PlantN <- c(12.1, 8.99, 12.89, 13.11) TNdfF(NdfF, PlantN) TNdfF(NdfF, SoilN)
The portion of the N that is released to the environment during the food production process and is not contained in the food that is consumed Calculate NUEFC using the formula: VNF = Nrec / Ncon
VNF(Nrec, Ncon)
VNF(Nrec, Ncon)
Nrec |
N used to produce food item that ends up recycled |
Ncon |
N in food item that is consumed |
The calculated VNF value
Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108 Secondary: Galloway, J. N., Winiwarter, W., Leip, A., Leach, A. M., Bleeker, A., and Erisman, J. W. (2014). Nitrogen footprints: past, present and future. Environ. Res. Lett. 9:115003. doi: 10.1088/1748-9326/9/11/115003
Nrec <- 7.314 Ncon <- 15.574 VNF(Nrec, Ncon)
Nrec <- 7.314 Ncon <- 15.574 VNF(Nrec, Ncon)